Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Añadir filtros

Base de datos
Tipo del documento
Intervalo de año
1.
Math Biosci Eng ; 20(5): 8875-8891, 2023 03 09.
Artículo en Inglés | MEDLINE | ID: covidwho-2287882

RESUMEN

Knowledge of viral shedding remains limited. Repeated measurement data have been rarely used to explore the influencing factors. In this study, a joint model was developed to explore and validate the factors influencing the duration of viral shedding based on longitudinal data and survival data. We divided 361 patients infected with Delta variant hospitalized in Nanjing Second Hospital into two groups (≤ 21 days group and > 21 days group) according to the duration of viral shedding, and compared their baseline characteristics. Correlation analysis was performed to identify the factors influencing the duration of viral shedding. Further, a joint model was established based on longitudinal data and survival data, and the Markov chain Monte Carlo algorithm was used to explain the influencing factors. In correlation analysis, patients having received vaccination had a higher antibody level at admission than unvaccinated patients, and with the increase of antibody level, the duration of viral shedding shortened. The linear mixed-effects model showed the longitudinal variation of logSARS-COV-2 IgM sample/cutoff (S/CO) values, with a parameter estimate of 0.193 and a standard error of 0.017. Considering gender as an influencing factor, the parameter estimate of the Cox model and their standard error were 0.205 and 0.1093 (P = 0.608), the corresponding OR value was 1.228. The joint model output showed that SARS-COV-2 IgM (S/CO) level was strongly associated with the risk of a composite event at the 95% confidence level, and a doubling of SARS-COV-2 IgM (S/CO) level was associated with a 1.38-fold (95% CI: [1.16, 1.72]) increase in the risk of viral non-shedding. A higher antibody level in vaccinated patients, as well as the presence of IgM antibodies in serum, can accelerate shedding of the mutant virus. This study provides some evidence support for vaccine prevention and control of COVID-19 variants.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Esparcimiento de Virus , Inmunoglobulina M
2.
Ann Clin Microbiol Antimicrob ; 22(1): 22, 2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: covidwho-2267807

RESUMEN

BACKGROUND: Chest computerized tomography (CT) scan is an important strategy that quantifies the severity of COVID-19 pneumonia. To what extent inactivated COVID-19 vaccines could impact the COVID-19 pneumonia on chest CT is not clear. METHODS: This study recruited 357 SARS-COV-2 B.1.617.2 (Delta) variant-infected patients admitted to the Second Hospital of Nanjing from July to August 2021. An artificial intelligence-assisted CT imaging system was used to quantify the severity of COVID-19 pneumonia. We compared the volume of infection (VOI), percentage of infection (POI) and chest CT scores among patients with different vaccination statuses. RESULTS: Of the 357 Delta variant-infected patients included for analysis, 105 were unvaccinated, 72 were partially vaccinated and 180 were fully vaccinated. Fully vaccination had the least lung injuries when quantified by VOI (median VOI of 222.4 cm3, 126.6 cm3 and 39.9 cm3 in unvaccinated, partially vaccinated and fully vaccinated, respectively; p < 0.001), POI (median POI of 7.60%, 3.55% and 1.20% in unvaccinated, partially vaccinated and fully vaccinated, respectively; p < 0.001) and chest CT scores (median CT score of 8.00, 6.00 and 4.00 in unvaccinated, partially vaccinated and fully vaccinated, respectively; p < 0.001). After adjustment for age, sex, comorbidity, time from illness onset to hospitalization and viral load, fully vaccination but not partial vaccination was significantly associated with less lung injuries quantified by VOI {adjust coefficient[95%CI] for "full vaccination": - 106.10(- 167.30,44.89); p < 0.001}, POI {adjust coefficient[95%CI] for "full vaccination": - 3.88(- 5.96, - 1.79); p = 0.001} and chest CT scores {adjust coefficient[95%CI] for "full vaccination": - 1.81(- 2.72, - 0.91); p < 0.001}. The extent of reduction of pulmonary injuries was more profound in fully vaccinated patients with older age, having underlying diseases, and being female sex, as demonstrated by relatively larger absolute values of adjusted coefficients. Finally, even within the non-severe COVID-19 population, fully vaccinated patients were found to have less lung injuries. CONCLUSION: Fully vaccination but not partially vaccination could significantly protect lung injury manifested on chest CT. Our study provides additional evidence to encourage a full course of vaccination.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Lesión Pulmonar , Femenino , Humanos , Masculino , Inteligencia Artificial , COVID-19/prevención & control , Vacunas contra la COVID-19/efectos adversos , Lesión Pulmonar/diagnóstico por imagen , SARS-CoV-2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA